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Abstract

In this paper, we compare a triangle based spectral element method (SEM) with the classical quadrangle based SEM

and with a standard spectral method. For the sake of completeness, the triangle-SEM, making use of the Fekete points

of the triangle, is first revisited. The requirement of a highly accurate quadrature rule is particularly emphasized. Then it

is shown that the convergence properties of the triangle-SEM compare well with those of the classical SEM, by solving

an elliptic equation with smooth (but steep) analytical solution. It is also proved numerically that the condition number

grows significantly faster for triangles than for quadrilaterals. Finally, the attention is focused on a diffraction problem

to show the high flexibility of the triangle-SEM.
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1. Introduction

The main advantage of standard spectral methods relies on the exponential convergence property as

soon as smooth solutions are involved (see, e.g. [5,11,20]). The main drawback is their inability to handle

complex geometries. Different strategies are, however, possible to overcome this difficulty. One of these

consists in the combination of the standard spectral approximation with a penalty method [9], but the most

famous one is certainly the quadrangle based spectral element method which was developed in the 80s

[17,21] and then largely adopted (see, e.g. [10,16] and references herein).

However, in order to handle highly complex geometries the use of triangular (tetrahedral in 3D) elements

is generally preferred. Therefore, hp-finite element methods have been deeply investigated during this last
decade [2,6,22]. In the field of spectral methods, it was suggested to restrict the Gauss–Lobatto mesh of the
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quadrilateral to the triangle [18]. Another approach was proposed in [16], based on the idea of using a

change of coordinates to transform the quadrangle (and its quadrature points) into a triangle. Here, we are

interested in the triangle based spectral element method (SEM) introduced in [25,26], relying on the use of
Koornwinder–Dubiner polynomials [8] and Fekete points [24], and in its efficient implementation. Such an

approach indeed appears to have a more valuable theoretical background.

The paper is organized as follows. To be self-contained, in Section 2 we revisit the triangle based SEM

(the TSEM) using Fekete points. The convergence properties of the TSEM are investigated in Section 3,

where we compare different spectral approaches, namely the standard spectral method, the standard SEM

and the TSEM in terms of accuracy and efficiency. In Section 4, we use the TSEM to solve a Helmholtz

problem in an open 2D domain containing a square obstacle, before going to the conclusion.

Note that we do not try to compare the SEM, the TSEM or even the usual finite element method (FEM)
in terms of computational cost. Conclusions would be problem dependent, machine dependent, etc., and

maybe too early to be stated. The computational cost of the usual FEM is of course inferior, but if high

accuracy is desired, then spectral approaches are generally preferable, at least for smooth solutions.

Moreover, in the present state of the art the standard SEM is to be preferred to the TSEM if a structured

mesh can be used to discretize the computational domain, essentially due to the fact that computing de-

rivatives is more expensive with the TSEM, as emphasized in the next section.
2. Triangle based SEM

Just like the SEM, the TSEM needs: (i) an orthogonal polynomial basis and (ii) a set of approximation

points. In the reference square Q ¼ ð�1; 1Þ2, these two sets result from tensorial products of the Legendre

polynomials and of the associated Gauss–Lobatto points, respectively.

Such a straightforward approach is no-longer possible for triangles. In the late 90s it was proposed to use

Koornwinder–Dubiner (KD) polynomials to constitute an orthogonal basis in the reference triangle T and

Fekete points (of the triangle) as approximation points. This approach is analyzed hereafter.

2.1. Koornwinder–Dubiner polynomials

In the reference triangle T ¼ fðr; sÞ; 0P r; sP � 1; r þ s6 0g, the following KD polynomials are or-

thonormal in L2ðT Þ, the Hilbert space of square-integrable functions on T and inner product

ðf ; gÞ ¼
R
T f ðr; sÞgðr; sÞdrds

wijðr; sÞ ¼ cijP
0;0
i

2r þ sþ 1

1� s

� �
1� s
2

� �i

P 2iþ1;0
j ðsÞ; ð1Þ

with cij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2iþ 1Þðiþ jþ 1Þ=2

p
and P a;b

i ðxÞ being Jacobi polynomials [1].

Let us consider now the space PN ðT Þ of polynomials defined on T and of total degree 6N . KD

polynomials wij, i; jP 0, iþ j6N , constitute an orthonormal basis of PN ðT Þ. The cardinality of this set is

n ¼ ðN þ 1ÞðN þ 2Þ=2. Hereafter, we no-longer use the notation wij but wk, 16 k6 n, with any arbitrary

bijection k � kði; jÞ. In this paper, it is simply assumed that the constant polynomial is w1ðr; sÞ ¼ 1=
ffiffiffi
2

p
.

2.2. Fekete points

For a long time it has been well known that polynomial approximations of a given function, say u with

u 2 C1ð�1; 1Þ, are of interest only if the set of points used to set-up the approximation is well chosen. More

precisely, let PN ð�1; 1Þ be the space of polynomials of maximum degree 6N defined in ð�1; 1Þ. Given a set
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of points fxigNþ1

i¼1 in ð�1; 1Þ, the (interpolant) polynomial INu of u at these points belongs to PN and verifies

INuðxiÞ ¼ uðxiÞ. The polynomial INu and u may greatly differ, i.e., ku� INuk � 0, where k � k stands for the

max (uniform, L1) norm. Legendre Gauss–Lobatto points, usually used in spectral methods, constitute a
satisfactory set. Moreover, they allow for an exact quadrature of any polynomial in P2N�1 and include

boundary points, which is convenient to enforce boundary conditions. The extension of the 1D and 2D

Cartesian case, with Q as reference element in the frame of the SEM, is straightforward. One introduces the

space PN ðQÞ of the polynomials defined on Q of maximum degree 6N with respect to each variable (note

that in 1D, PN � PN , but in 2D or 3D, PN is a proper subset of PN ).
When non-Cartesian geometries are involved, as T in the TSEM, the problem of finding a right set of

points arises again. However, an essential remark is that in quadrilaterals Gauss–Lobatto points are also

Fekete points [3,4] and that Fekete points may be defined in any geometry, especially in the reference
triangle T . Given a polynomial basis, say fwjg

n
j¼1, Fekete points are those which maximize the determinant

of the Vandermonde matrix V , whose elements are defined as Vij ¼ wjðyiÞ, with yi, i ¼ 1; . . . ; n, arbitrary
points in T . Thus, computing Fekete points, say fxigni¼1, requires to solve an optimization problem: find the

set fxigni¼1 of points in T such that detðV Þðx1; . . . ; xnÞ is maximal. For the triangle this problem was solved

for different values of N , up to N ¼ 18, in [24]. One may easily check that the set of Fekete points does not

depend on the choice of the basis fwjg
n
j¼1 and the following important property holds [24]: Lagrange

polynomials f/jg
n
j¼1 built on Fekete points, i.e., such that /jðxiÞ ¼ dij, 16 i, j6 n, are maximal at these

points. Moreover, on the sides of T , Fekete points coincide with Gauss–Lobatto points, allowing for
conforming meshes of triangles and quadrilaterals. This was conjectured/proved in [3], numerically checked

in [24] and used, e.g., in [15].

It remains that Fekete points are not Lebesgue points, i.e., points which minimize the Lebesgue constant

kINk appearing in the following inequality:

ku� INuk6 ð1þ kINkÞku� u�k;

where u� 2 PN is the best polynomial approximation of u. Fekete points are not optimal (see, e.g. [12] for

better points if N < 9). However, one observes numerically that for Fekete points kINk / N , with the

theoretical result kINk6N . In contrast, in the 1D case, for equidistant points the increase of the Lebesgue
constant with respect to N is exponential.

In Fig. 1, we compare the distributions of Fekete points, in T , and of Gauss–Lobatto points, in Q, for
N ¼ 12.
Fig. 1. Collocation points in the reference triangle (left) and square (right) for N ¼ 12.
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2.3. Derivatives and inner products

In any finite element or spectral element approximation, the key-point is to compute efficiently deriv-
atives and inner products in each element. Let us focus on such an element, say x. As usual we introduce a

mapping, say g : T ! x and approximate ujx 2 L2ðxÞ with uN such that uNsg 2 PN ðT Þ. With ui the values
of u at the points gðxiÞ, uN reads

uN ðx; yÞ ¼
Xn
i¼1

ui/iðrðx; yÞ; sðx; yÞÞ; 8ðx; yÞ 2 x:
2.3.1. Derivatives

By applying the chain rule, the computation of derivatives at the approximation points yields to in-
troduce two differentiation matrices

Dr
ij ¼ or/jðxiÞ; Ds

ij ¼ os/jðxiÞ:

To set-up these matrices we write

wjðxÞ ¼
Xn
k¼1

wjðxkÞ/kðxÞ ¼
Xn
k¼1

Vkj/kðxÞ;

if we differentiate, e.g., with respect to r, and express the result at the point xi, we obtain

orwjðxiÞ ¼
Xn
k¼1

Vkj or/kðxiÞ ¼
Xn
k¼1

VkjDr
ik; i ¼ 1; . . . ; n:

Denoting by V r the matrix whose elements are V r
ij ¼ orwjðxiÞ and similarly for V s, in matrix form we have

Dr ¼ V �1V r; Ds ¼ V �1V s:

Here, it should be remarked that the differentiation matrices are of dimension n� n, whereas in the

quadrangle based SEM they are only of dimension ðN þ 1Þ � ðN þ 1Þ, thanks to the Cartesian structure of
the mesh.

2.3.2. Inner products

The usual way to approximate an integral expression as

I ¼
Z
x
uvdx;

is to use a quadrature rule. Thus, setting ui ¼ uðgðxiÞÞ, i ¼ 1; . . . ; n, and similarly for v, and denoting by
fwigni¼1 the set of quadrature weights and J the Jacobian determinant of the mapping g, we have

I �
Xn
i¼1

uiviJðxiÞwi: ð2Þ

Given the Fekete points, it is of course possible to compute the quadrature weights that allow for an exact

calculation of any polynomial of PN ðT Þ. The set of quadrature weights solves the following linear system:

Xn
i¼1

wiwjðxiÞ ¼
Z
T
wjðxÞdx ¼ dj1; j ¼ 1; . . . ; n;
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where the second equality results from the orthogonality of the KD polynomials. Then we simply obtain

wi ¼
ffiffiffi
2

p
ðV �1Þ1i:

This result is, however, minimal: the quadrature rule is only exact if the integrand belongs to PN ðT Þ, i.e.,
Fekete points for the triangle fail to show the nice quadrature property of Gauss–Lobatto points for the
quadrilateral. One may then check that for a second order elliptic problem as the one considered in the next

section (see Eq. (4)), the exponential convergence property, characteristic of spectral methods, is lost.

A much better approximation, i.e., exact in P2N , may be obtained if J is assumed constant, i.e., if g is a

linear mapping [26]. In this case, denoting by fûigni¼1 the spectrum of the interpolant of usg on the KD

polynomial basis, we have

I � J
Xn
i¼1

ûiwi;
Xn
j¼1

v̂jwj

 !
¼ J

Xn
k¼1

ûk v̂k:

The integral I may easily be written in terms of grid-point values. From the following relations, where the
superscript T stands for ‘‘transposition’’

/iðxÞ ¼
Xn
j¼1

V �T
ij wjðxÞ;

ûk ¼
Xn
i¼1

ui/i;wk

 !
¼
Xn
i¼1

uið/i;wkÞ;

ð/i;wkÞ ¼ V �T
ik ¼ V �1

ki ;

we obtain

I � J
Xn
k¼1

Xn
i¼1

uiV �1
ki

 ! Xn
j¼1

vjV �1
kj

 !
¼ J

Xn
i¼1

ui
Xn
j¼1

vj
Xn
k¼1

V �1
ki V �1

kj :

In matrix form, with u and v gathering the ui and vi, we thus have

I � J uTW v; W ¼ V �TV �1: ð3Þ

In this paper, we only consider the case of non-deformed triangular elements, so that, being J constant on

each element the quadrature rule (3) is satisfactory. In case of non-linear mappings , it is relevant to use a

quadrature rule based on Gauss points, showing suitable characteristics, especially symmetry, since such

sets of points are known for simplices [7,23]. In this case, we should first interpolate u and v at the Gauss

points before using a quadrature formula similar to (2).
3. Tests and comparisons

Our goal in this section is first to check the convergence properties of the TSEM with respect to N and to

the number K of spectral elements. These are the so-called p- and h-convergence in the frame of hp-finite
elements (p: polynomial approximation degree and h: space step size). Second we compare the convergence

rates of different spectral approximations: the standard spectral method, the (quadrangle based) SEM and

the TSEM. To this end we consider the following problem:
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�r2uþ u ¼ f in X ¼ ð�1; 1Þ2;
u ¼ uC on C ¼ oX;

�
ð4Þ

where f is the source term and uC the boundary value.

Our implementation of the spectral element method is standard (see, e.g. [16,17]). For the TSEM (as for

the SEM), it may be viewed as a direct extension of the finite element method, when using for basis

functions Lagrange polynomials built on Fekete points (Legendre Gauss–Lobatto points for SEM). Let us

note that contrary to the SEM, the TSEM mass matrix is generally not diagonal. Thus, the elemental mass
matrices are in our implementation proportional to matrix JW . Moreover, setting up the stiffness matrix is

more costly since, as already mentioned, the dimension of the differentiation matrices corresponds to the

number n of Fekete points per triangle.

3.1. Convergence properties of the TSEM

We tested the accuracy of the TSEM by performing a N - and h-convergence study. As in [26], problem

(4) is considered with the source term f and the boundary value uC consistent with u ¼ sinðpxÞ sinðpyÞ. The
mesh is obtained by first dividing X into K ¼ k2 identical squares and then by dividing similarly each of

them into two triangles. The grid-size parameter h is chosen equal to 2=k.
Fig. 2 shows the log-plots of the error for a few choices of N , since the zero machine (machine accuracy)

is reached quite soon (for N ¼ 12). As expected the convergence to the exact solution is of algebraic type

and achieved with an order of accuracy equal to ðN þ 1Þ with respect to h. Fig. 3 shows the semi log-plots of

the error for a few choices of h. As expected exponential convergence is achieved with respect to N .

3.2. Comparison of different spectral approximations

To make a detailed comparison between the standard spectral method and the quadrangle based SEM or

the TSEM, we produce now results obtained with each of these methods for the test problem (4). However,

to stiffen the problem and thus avoid to reach too quickly the zero machine, the source term f and the

boundary value uC are here consistent with u ¼ tanh 6ðx2 þ y2 � 0:52Þ.
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Fig. 2. A h-convergence study for the TSEM solution of problem (4) for different values of N .



Table 1

Number of grid-points for K ¼ k2 quadrangles or K ¼ 2k2 triangles with PN and PN approximations, respectively

k=N 3 6 9 12 15 18

2 169 361 625 961 1369

4 169 625 1369 2401 3721 5329

8 625 2401 5329
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Fig. 3. A N -convergence study for the TSEM solution of problem (4) for different values of h.
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• For the standard spectral approach, we have used a Chebyshev collocation method, i.e., the numerical

solution solves the strong form of problem (4) at the Chebyshev Gauss–Lobatto points. The polynomial

space is PN , i.e., the set of polynomials of maximum degree 6N in each variable. The following values of

N have been used: N ¼ 20; . . . ; 80. The corresponding number of grid-points is Np ¼ ðN þ 1Þ2.
• For the SEM, the computational domain has been partitioned into K ¼ k2 identical squares, with a PN

approximation in each of them. In Table 1, we give the numbers of grid-points, Np ¼ ðkN þ 1Þ2, for some

choices of k and N among the ones we have considered while performing numerical tests. Note that, dou-

bling N or doubling k yields same numbers of grid-points.
• For the TSEM, we have used K ¼ 2k2 identical triangles, obtained by dividing each square into two tri-

angles. The polynomial space in each triangle is PN , i.e., the set of polynomials of total degree 6N . The

number of grid-points also equals Np ¼ ðkN þ 1Þ2.
In Figs. 4 and 5, we give the max norm of the error computed at the grid-points between the analytical

solution of problem (4) and the one obtained with the SEM or the TSEM. In Fig. 4, the line associated with

k ¼ K ¼ 1 corresponds to the error obtained with the standard spectral Legendre approximation of the

weak form of problem (4).

Different slopes are shown for the SEM in Fig. 4 and for the TSEM in Fig. 5: they correspond, as in-
dicated in the captions, to different choices of k. Each line carries points corresponding to the considered

values of N . To make a comparison of different spectral element (SEM and TSEM) approximations, for

each k we made a run with values of N such that ð1þ kNÞ < 80. Looking at Figs. 4 and 5, we observe that

for smooth problems it is better with both methods to use large values of N and small k: the slopes which
are closer to the Chebyshev approximation correspond in fact to k ¼ 3, 4 and carry points for N ¼ 6, 9, 12,
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15, 18. It results that the SEM and the TSEM show the exponential convergence property. In Fig. 4, it can

also be remarked that the Chebyshev strong formulation approximation gives a slightly better result than

the Legendre weak one. Finally, when comparing the two figures it appears that the SEM and TSEM

approximations give very close results, i.e., for similar numbers k of spectral elements similar accuracy may

be reached with both methods.

One important aspect to consider is the condition number of the system matrix which results from the

SEM or TSEM approximation of problem (4). The choice of Fekete points in case of the TSEM should find
here its full justification. Fig. 6 shows the log-plot of the reciprocal of the condition number (as computed

by the routine DGESVX of the LAPACK library) versus the adopted degree N for both methods, the value

of k being fixed to 4. Clearly the condition number shows, for the SEM, a OðN 3Þ behavior and, for the



Fig. 6. Condition number of the system matrix obtained after discretization of problem (4) by the SEM or the TSEM (k ¼ 4).

Comparison with the condition number for the Poisson problem.
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TSEM, a OðN 4Þ one. For the SEM, the OðN 3Þ behavior is in agreement with the theoretical result obtained

in [19] (in the present study the mass matrix is the identity so that the result obtained in [19] for the stiffness

matrix should be relevant). The OðN 4Þ rather than OðN 3Þ is more surprising and could find an explanation

in the fact that the elemental mass matrix is no-longer the identity but equals JW (see Eq. (3)). To verify

this, we have also computed the variation of the condition number with respect to N for the Poisson

problem, since in this case the system matrix reduces to the stiffness matrix. The results for the Poisson

problem are also presented in Fig. 6, where one remarks again the OðN 3Þ and OðN 4Þ behaviors of the
condition number for the SEM and the TSEM, respectively.

It is worthwhile to mention that a OðN 4Þ behavior remains acceptable. It is, e.g., the condition number

for the stiffness matrix we have in 2D hp-finite element approximations when the usual set of hierarchical

basis functions is used. In [13], it is indeed proved that for this basis the condition number should increase

as N 4ðd�1Þ, where d is the space dimension.
4. Application to a scattering problem

Here, our goal is to apply the TSEM for the numerical resolution of a 2D scattering problem [14]. We

consider a square obstacle in R2 intercepting a time-harmonic plane wave with constant velocity c, parallel
to the x-direction. To reduce the infinite physical domain to a finite (then accessible to numerical simula-

tions) computational domain, we introduce a non-reflecting boundary CT at a given distance R from the

obstacle. Due to the problem symmetry, we can study the proposed scattering problem in half domain, as

shown in Fig. 7 (left), and the adopted ‘‘macromesh’’ is presented in Fig. 7 (right). The word ‘‘macromesh’’

refers to the nodes of the triangular mesh that is usually generated by a mesh generator. On each triangle of
the macromesh we define Fekete nodes. The set of all Fekete nodes constitutes the ‘‘micromesh’’.

The wave equation in the time interval ½0; T �, T > 0, writes

o2tU � c2r2U ¼ 0; in X� ½0; T �;

and we look for a time-harmonic (complex) solution U written as the superimposition of the incident wave
with the reflected/diffracted one
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Fig. 7. Computational domain (left) and a triangular macromesh (right).
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U ¼ eiðk�x�xtÞ þ uðxÞe�ixt:

Of course, only the real part of U has a physical meaning.

The dispersion relation reads jkj ¼ x=c, so that the complex amplitude u of the reflected field solves in X
the Helmholtz equation

�r2u� jkj2u ¼ 0:

The considered boundary conditions are defined as follows:

• Dirichlet conditions at CD, the obstacle boundary: u ¼ �eik�x, so that U ¼ 0.

• Homogeneous Neumann conditions at CN , the axis of symmetry : oyu ¼ 0.

• A non-reflecting Sommerfeld radiation condition at CT, the circle used to close the computational do-

main: onu ¼ ijkju, where on stands for the derivative in the outward normal direction. This condition
minimizes the spurious reflections due to the presence of the artificial boundary.

The difficulty comes here from the fact that u is a complex field. Despite the fact that the operator r2 is

real, coupling occurs through the Dirichlet and non-reflecting boundary conditions.

Computations have been made with the following geometrical parameters: the square is of 2
ffiffiffi
2

p
width,

located at the center of the outer circle of radius R ¼ 5. The wavenumber is jkj ¼ 3:14 and the wavelength k
approximatively equals 2. In Fig. 7 (right), we show the macromesh used when M ¼ 6 triangular elements

match the side of the square. In this case, we approximatively have four triangles per wavelength. In

contrast, at least 10 triangles per wavelength are needed with classical piece-wise linear finite elements. The
results given hereafter are characterized by: (i) the polynomial approximation degree, N and (ii) the number

of triangles along the side of the obstacle, M . The computational cost directly depends on the values of

these parameters, which determine the number of micromesh points.

The real part of the computed solutions in the complete domain for different values of N are presented in

Fig. 8. The computed solution results from the superposition of four terms: the incident and reflected

geometrical optics (GO) fields and a diffracted field associated with each optical form. To better understand

the computed solution, we have introduced the shadow and the reflection boundaries drawn by a dashed

line in Fig. 7 (left) for the computational domain (see Fig. 9 (left) for the whole domain). GO divides the
space surrounding the obstacle into well-defined regions of reflection plus direct illumination (region I),

direct illumination alone (region II) and total shadow (region III). The remaining diffracted field compo-

nents compensate for the discontinuities of the GO field across the two boundaries to ensure the continuity

of the total field. These two boundaries are visible in Fig. 8 and, as we have represented the scattered field,

we can see the field reflected from the obstacle side in region I, the field diffracted from the obstacle corners



Fig. 8. Real part of the computed solution for N ¼ 3 (top-left), N ¼ 6 (top-right), N ¼ 9 (bottom-left) and N ¼ 12 (bottom-right) on a

macromesh such that M ¼ 6. The corresponding numbers of micromesh points are 667, 2557, 5671 and 9958, respectively.
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located at ()2,0) and (0,2) (and its symmetric at (0,)2)) in regions I and II, the incident field with an

opposite sign in region III.

In order to better appreciate the effect of an increase of the polynomial order N , let us use as ‘‘reference

solution’’ the one obtained with N ¼ 15 on the macromesh such that M ¼ 6. Then one can consider some

particular points and look at the error between the reference solution and the one obtained with N < 15 at

these points. It is of interest to consider such points in the different regions, I–III, previously defined. Their

coordinates are ()1.6891, 1.7902), (1.0101, 2.4069) and (2.4009, 1.2210), respectively. For the sake of
simplicity, we choose such points at the vertices of the macromesh, the locations of the other collocation

points depending on N . Fig. 9 shows the variations of the error with respect to N at the chosen three points.

It comes out that, as expected, the error decreases as soon as N approaches N ¼ 15. Moreover, the error
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modulus depends on the region the particular point belongs to: in region I the scattered field is more intense

than in region II or III.

To show the influence of changes in the macromesh, computations have also been done with macro-

meshes characterized by M ¼ 4 and 8. The results obtained with the pairs (M ¼ 8, N ¼ 6) and (M ¼ 4,

N ¼ 9) are shown in Fig. 10. The result obtained with (M ¼ 8, N ¼ 6) is already satisfactory, at least

qualitatively, whereas this is not the case with (M ¼ 4, N ¼ 9).
Fig. 10. Real part of the computed solution for (N ¼ 6, M ¼ 8) (left) and (N ¼ 9, M ¼ 4) (right). The corresponding numbers of

micromesh points are 3037 and 2629, respectively.
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To conclude with the quality of results, it is clear that the choice of the right degree N to use depends on

the coarseness of the macromesh as well as on the wavelength. For the given wavelength k � 2, Figs. 8 and

9 show that, for the macromesh such that M ¼ 6, the value N ¼ 3 is too low even if the main features of the
computed field are already visible. The value N ¼ 6 is limit correct, better if considered on a finer mesh, as it

can be noticed by comparing the results presented in Figs. 8 and 10 (left). Finally, the value N ¼ 9 is limit

correct for a very coarse mesh as shown in Fig. 10 (right).
5. Conclusions

Numerical results presented here show the capabilities of the TSEM to compute accurately solutions in
highly complex geometries. The main interest, versus, e.g., hp-finite element methods, is that there are few

changes with respect to a standard finite element approach. The presented TSEM still relies on a nodal basis

and not on a modal one, i.e., the basis functions are Lagrange polynomials built on the grid-points. The

gain in terms of precision is evident from the application of the method to compute the solution of test or

more involved problems. When compared to the standard SEM, the main advantage of the TSEM comes

from the highest capability of triangles to handle complex geometries. However, (i) for Fekete points there

is no Gauss quadrature rule and (ii) the computation of the derivatives involves all collocation point values,

so that the computational cost is heavier. The most natural approach will then combine the SEM with the
TSEM, to get advantage of both methods� features, at least for 2D problems or 3D problems showing one

periodic direction.
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